skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Martin Man-chun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract For any smooth Riemannian metric on an $$(n+1)$$ ( n + 1 ) -dimensional compact manifold with boundary $$(M,\partial M)$$ ( M , ∂ M ) where $$3\le (n+1)\le 7$$ 3 ≤ ( n + 1 ) ≤ 7 , we establish general upper bounds for the Morse index of free boundary minimal hypersurfaces produced by min–max theory in the Almgren–Pitts setting. We apply our Morse index estimates to prove that for almost every (in the $$C^\infty $$ C ∞ Baire sense) Riemannan metric, the union of all compact, properly embedded free boundary minimal hypersurfaces is dense in M . If $$\partial M$$ ∂ M is further assumed to have a strictly mean convex point, we show the existence of infinitely many compact, properly embedded free boundary minimal hypersurfaces whose boundaries are non-empty. Our results prove a conjecture of Yau for generic metrics in the free boundary setting. 
    more » « less